首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   3篇
安全科学   7篇
废物处理   6篇
环保管理   70篇
综合类   26篇
基础理论   109篇
环境理论   2篇
污染及防治   77篇
评价与监测   14篇
社会与环境   11篇
灾害及防治   2篇
  2023年   2篇
  2020年   5篇
  2019年   3篇
  2018年   9篇
  2017年   6篇
  2016年   11篇
  2015年   7篇
  2014年   8篇
  2013年   33篇
  2012年   10篇
  2011年   26篇
  2010年   14篇
  2009年   10篇
  2008年   17篇
  2007年   14篇
  2006年   15篇
  2005年   11篇
  2004年   8篇
  2003年   10篇
  2002年   16篇
  2001年   7篇
  2000年   7篇
  1999年   2篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1989年   3篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1964年   2篇
  1963年   2篇
  1956年   1篇
  1946年   1篇
  1938年   1篇
  1917年   1篇
排序方式: 共有324条查询结果,搜索用时 31 毫秒
21.
Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant. Recommendations for future directions in ammonia research include designing experiments to improve emission factors and their resolution in all significant source categories, developing mass balance models, and refining of the livestock activity level data by eliciting judgment from experts in this field.  相似文献   
22.
23.
24.
25.
Soil methane (CH(4)) biofilters, containing CH(4)-oxidizing bacteria (methanotrophs), are a promising technology for mitigating greenhouse gas emissions. However, little is known about long-term biofilter performance. In this study, volcanic pumice topsoils (0-10 cm) and subsoils (10-50 cm) were tested for their ability to oxidize a range of CH(4) fluxes over 1 yr. The soils were sampled from an 8-yr-old and a 2-yr-old grassed landfill cover and from a nearby undisturbed pasture away from the influence of CH(4) generated by the decomposing refuse. Methane was passed through the soils in laboratory chambers with fluxes ranging from 0.5 g to 24 g CH(4) m(-3) h(-1). All topsoils efficiently oxidized CH(4). The undisturbed pasture topsoil exhibited the highest removal efficiency (24 g CH(4) m(-3) h(-1)), indicating rapid activation of the methanotroph population to the high CH(4) fluxes. The subsoils were less efficient at oxidizing CH(4) than the topsoils, achieving a maximum rate oxidation rate of 7 g CH(4) m(-3) h(-1). The topsoils exhibited higher porosities; moisture contents; surface areas; and total C, N, and available-P concentrations than the subsoils, suggesting that these characteristics strongly influence growth and activity of the CH(4)-oxidizing bacteria. Soil pH values and available-P levels gradually declined during the trial, indicating a need to monitor chemical parameters closely so that adjustments can be made when necessary. However, other key soil physicochemical parameters (moisture, total C, total N) increased over the course of the trial. This study showed that the selected topsoils were capable of continually sustaining high CH(4) removal rates over 1 yr, which is encouraging for the development of biofilters as a low-maintenance greenhouse gas mitigation technology.  相似文献   
26.
27.
28.
Chung PP  Hyne RV  Mann RM  Ballard JW 《Chemosphere》2011,82(7):1050-1055
Anthropogenic effects such as contamination affect the genetic structure of populations. This study examined the temporal and geographical patterns of genetic diversity among populations of the benthic crustacean amphipod Melita plumulosa in the Parramatta River (Sydney, Australia), following an industrial chemical spill. The spill of an acrylate/methacrylate co-polymer in naphtha solvent occurred in July 2006. M. plumulosa were sampled temporally between December 2006 and November 2009 and spatially in November 2009. Genetic variation was examined at the mitochondrial cytochrome c oxidase subunit I locus. Notably, nucleotide diversity was low and Tajima’s D was significantly negative amongst amphipods collected immediately downstream from the spill for 10 months. We hypothesize that the spill had a significant localized effect on the genetic diversity of M. plumulosa. Alternate explanations include an alternate and unknown toxicant or a localized sampling bias. Future proposed studies will dissect these alternatives.  相似文献   
29.
Extraction of labile metals from solid media is environmentally more meaningful than a total digestion. A variety of reagents have been introduced in the literature, but dilute HCl has received the greatest attention. We compare metal concentrations liberated by a dilute HCl leach with the sum of the 3-step optimized (standardized) BCR sequential extraction procedure. This is the first study to compare these procedures over a range of grain sizes. Road-deposited sediments from 10 sites in Honolulu were fractionated into six grain size classes. Aliquots of individual fractions were digested with dilute HCl, the 3-step BCR procedure (‘labile’), and a 4-acid (total) procedure. Results indicated that the weighted labile concentrations of Al, Cu, Fe, Mn, Ni, Pb and Zn were statistically greater than those from the dilute HCl leach. However, regression analysis indicated strong statistically significant relationships between the two partial extraction procedures for all metals. On a whole-sample basis, the toxicity classifications for anthropogenic-enhanced metals (Cu, Pb and Zn) were similar between extractions. Taken together, results suggest that the application of dilute HCl to solid media provides a rapid, cost-effective, and environmentally meaningful approach for contaminant monitoring.  相似文献   
30.
Despite the largely theoretical risks for human morbidity from exposure to DDT (p, p′-dichlorodiphenyltrichloroethane), the reality that it is inexpensive and highly effective in reducing morbidity and mortality from malaria vectors has encouraged its continued use. Here we present data indicating that domestic fowl are potentially excellent sentinel species for detecting possible human exposures to DDT. In addition to measuring residues of DDT in chicken blood or eggs, a potential alternate analyte indicative of recent DDT exposure is the definitive metabolic product DDA (2,2-bis(4-chlorophenyl)acetic acid) in feces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号